

Analysis of Meta-Learning Methods in a More Realistic Cross-Domain Scenario

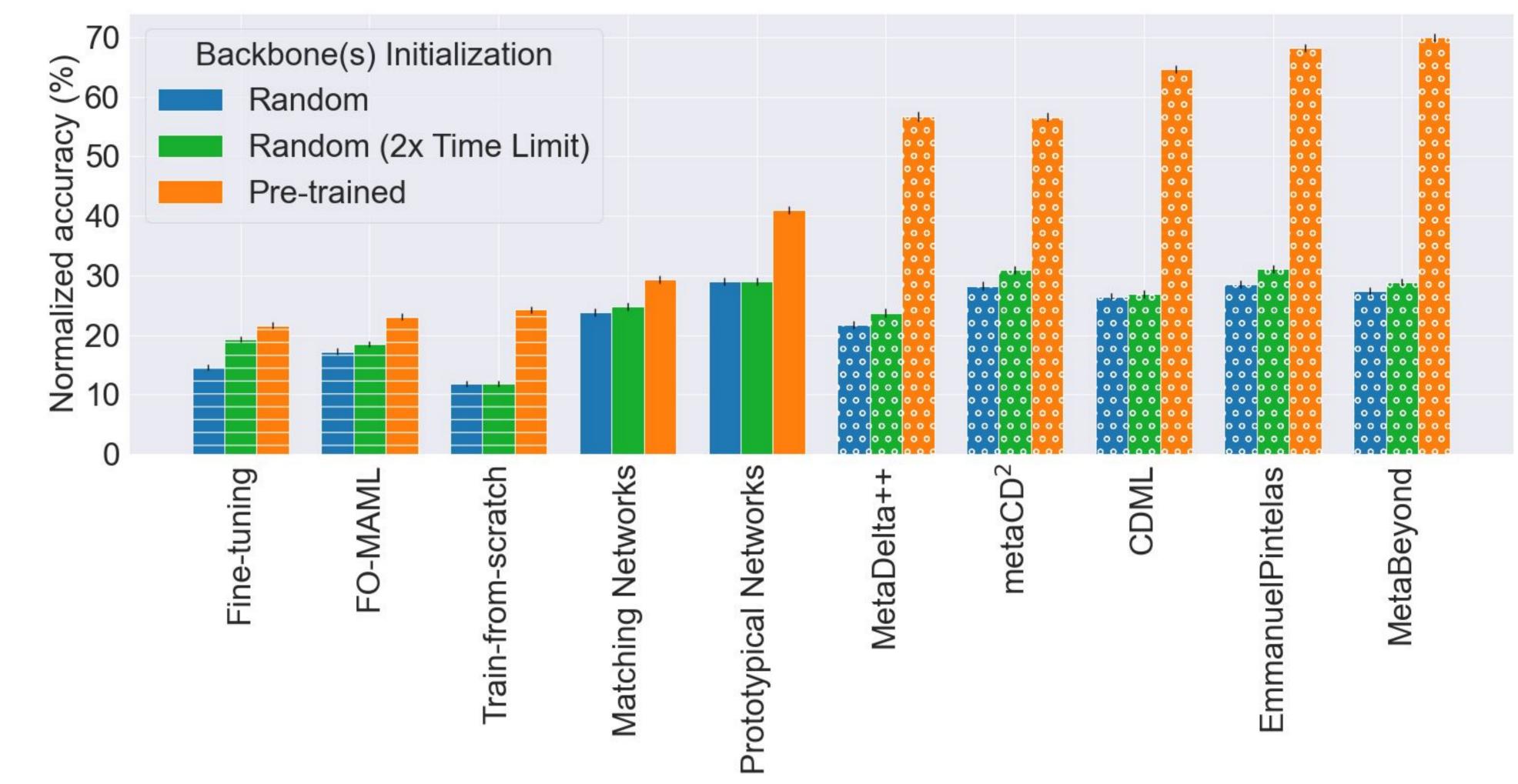
Dustin Carrión-Ojeda, Stefan Roth, Simone Schaub-Meyer

1. INTRODUCTION

- Motivation: Current evaluation settings primarily focus on within-domain scenarios.
- Challenges: Real-world situations involve multiple domains with varying task configurations [1].
- **Goal:** Motivate the development of methods suited for the any-way

4. RESULTS

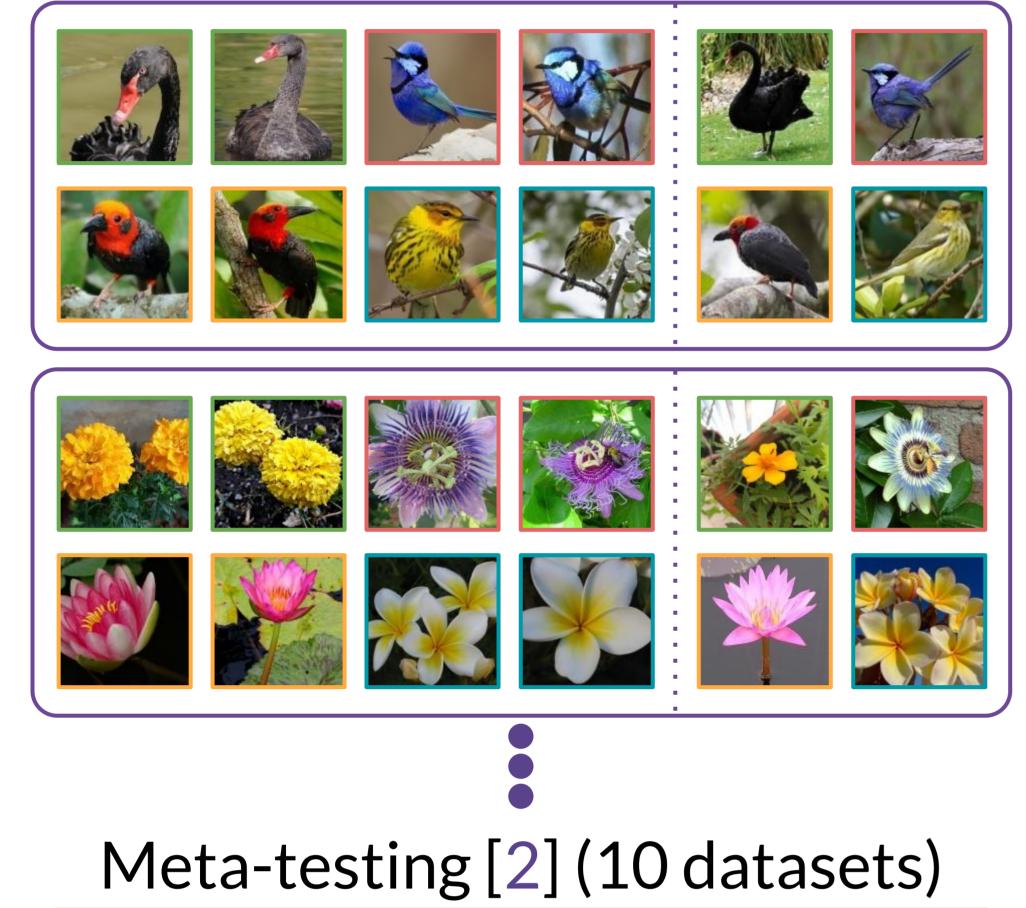
Analysis of the impact of the backbones' initialization. The bars' texture indicates the following: *horizontal lines* – linear classifier, *no* texture – NCC, circles – based on MetaDelta++ [6].



any-shot cross-domain scenario.

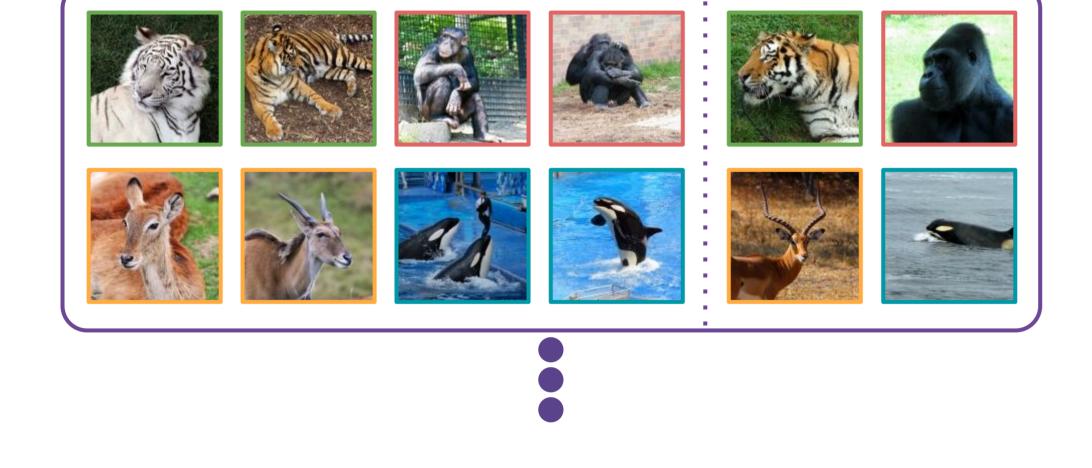
2. EXPERIMENTAL SETUP

Meta-training [2] (20 datasets)



Ablation study of the shared components among the four methods explicitly designed for the any-way any-shot cross-domain scenario.

Team	Pre-training	Data augmentation	Domain adaptation	Optimizations	Normalized accuracy (%)
MetaBeyond					17.53 ± 0.34
	1				66.24 ± 0.39
	1	1			66.07 ± 0.39
	1	1	1		(Timeout)
	1	\checkmark	1	\checkmark	69.97 ± 0.39
EmmanuelPintelas					20.54 ± 0.38
	1				63.54 ± 0.42
	1	~			64.45 ± 0.42
	1	1	1		66.04 ± 0.41
	1	1	1	1	68.55 ± 0.39
CDML					18.20 ± 0.36
	1				61.16 ± 0.40
	1	1			62.91 ± 0.39
	1	1	1		62.55 ± 0.39
	\checkmark	~	1	1	64.60 ± 0.39
metaCD ²					16.06 ± 0.33
	\checkmark				56.65 ± 0.41
	1	1			56.19 ± 0.41
	1	1	1		56.56 ± 0.41
	1	1	1	1	56.76 ± 0.42



3. EVALUATED METHODS

- **Baseline methods:** Train-from-scratch, Fine-tuning, Matching Networks [3], Prototypical Networks [4], FO-MAML [5], MetaDelta++ [6].
- MetaBeyond: Two meta-learners (ResNet-50 and PoolFormer-S24) equipped with multiple lightweight task-adaptation modules.

5. TAKE HOME MESSAGE

- Pre-trained backbones > randomly initialized backbones
- Randomly initialized backbones + more training time = almost no benefit
- Data augmentation/domain adaptation techniques + extra

- EmmanuelPintelas: Single meta-learner (SE-ResNet-152D) with an ensemble of distance- and linear-based classifiers.
- **CDML:** Two meta-learners (SEResNext101 and SEResNext50) enhanced with contrastive learning and self-optimal transport.
- metaCD²: MetaDelta++ improved by including contrastive learning and regularized knowledge distillation using a student-teacher approach (SWSL-ResNet50).

optimizations = better performance

REFERENCES

[1] Cheng Perng Phoo et al. "Self-training for few-shot transfer across extreme task differences". In ICLR, 2021.

[2] Ihsan Ullah et al. "Meta-Album: Multi-domain meta-dataset for few-shot image classification". In NeurIPS D&B Track, 2022.

[3] Oriol Vinyals et al. "Matching networks for one shot learning". In *NeurIPS*, 2016.

[4] Jake Snell et al. "Prototypical networks for few-shot learning". In NeurIPS, 2017.

[5] Chelsea Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks". In ICML, 2017.

[6] Yudong Chen et al. "MetaDelta: A meta-learning system for few-shot image classification". In AAAI Workshop on Meta-Learning and MetaDL Challenge, 2021.

